Herramienta / solucionador para resolver una o varias ecuaciones. Una ecuación es una expresión matemática presentada como una igualdad entre dos elementos que contienen variables incógnitas.
Solucionador de Ecuaciones - dCode
Etiqueta(s): Computación Simbólica
dCode es gratuito y sus herramientas son una valiosa ayuda en juegos, matemáticas, geocaching, acertijos y problemas para resolver todos los días.
¿Una sugerencia? ¿Un comentario? ¿Un error? ¿Una idea? ¡Escribe en dCode!
Una ecuación es una igualdad matemática entre 2 elementos distribuidos a cada lado del signo igual, cada uno de los cuales puede contener variables/incógnitas.
La calculadora dCode le permite resolver las ecuaciones (o desigualdades u otras fórmulas matemáticas) y encontrar las incógnitas. Las ecuaciones deben contener un carácter de comparación como igual ya sea = (o < o >).
Ejemplo: $ 2x=1 $ remite la solución $ x = 1/2 $
dCode remite soluciones exactas (enteros, fracción, etc.) de forma predeterminada (para sistemas de ecuaciones lineales y no lineales), si la ecuación contiene números de coma decimal, entonces dCode devolverá una solución con números decimales.
Ejemplo: $ 2x = 1.0 $ remite la solución $ x = 0.5 $
Para resolver un criptaritmo (reemplazo de varias variables de letras por enteros entre 0 y 9), usar el solucionador de criptaritmos en dCode.
Se pueden combinar varias ecuaciones con el operador de conjunción lógica && o ⋀ o con un salto de línea entre cada ecuación.
Ejemplo: El sistema de ecuaciones de primer y segundo grado 2x ^ 2 + 1 = 3 && 3x-1 = 2 da 'x = 1'
Para resolver un sistema de ecuaciones, el solucionador espera que las ecuaciones estén separadas por && o ⋀. Las incógnitas se deben enumerar y separar en la casilla adequada.
Utilice la herramienta dedicada para comprobar una igualdad o, ingresar la ecuación y hacer clic en resolver, el solucionador responderá true/verdadero si se verifica la igualdad independientemente de la variable (hay un número infinito de posibles soluciones para la variable).
Ejemplo: 2n+18n+4=2(n+9n+2) es VERDADERO para cualquier valor de n
El solucionador devolverá false/falso si la igualdad no es posible (si no hay solución para la variable)
Ejemplo: 5(x-7)=3(x+2)+2x es FALSE para cualquier valor de x
Agregar una línea adicional que actuará como una ecuación adicional.
Ejemplo: $ x^2-2 = 0 \ \&\& \ x > 0 $ si la ecuación es válida solo en $ x > 0 $ estrictamente positivo.
Las etapas de cálculo del solucionador no se muestran porque no corresponden a las etapas del enfoque que tendría un humano. Las operaciones realizadas por el solucionador son cálculos binarios bit a bit muy diferentes de los de un solucionador manual por un matemático.
dCode conserva la propiedad del código fuente "Solucionador de Ecuaciones". Cualquier algoritmo para "Solucionador de Ecuaciones", subprograma o fragmento o script (convertidor, solucionador, cifrado / descifrar, codificar / decodificar, cifrar / descifrar, descifrar, traducir), o todas las funciones "Solucionador de Ecuaciones" (calcular, convertir, resolver, descifrar / cifrar, descifrar / cifrar, decodificar / codificar, traducir) escritas en cualquier lenguaje informático (Python, Java, PHP, C#, Javascript, Matlab, etc.) o cualquier base de datos, o acceso API a "Solucionador de Ecuaciones" no son públicas (excepto una licencia explícita de código abierto). Lo mismo ocurre con la descarga para uso sin conexión en PC, dispositivos móviles, tabletas, iPhone o Android. aplicación.
Recordatorio: dCode es un recurso educativo y didáctico, accesible online de forma gratuita y para todos.
El contenido de la página "Solucionador de Ecuaciones" así como sus resultados pueden copiarse y reutilizarse libremente, incluso con fines comerciales, siempre que se cite dCode.fr como fuente (Licencia de distribución libre Creative Commons CC-BY).
La exportación de los resultados es gratuita y se realiza simplemente haciendo clic en los íconos de exportación ⤓ (formato .csv o .txt) o ⧉ copiar y pegar.
Para citar dCode.fr en otro sitio web, utilice el enlace:
En un artículo o libro científico, la cita bibliográfica recomendada es: Solucionador de Ecuaciones en dCode.fr [sitio web en línea], recuperado el 2025-06-15,