Search for a tool
Matrix Trigonalization

Tool to calculate a matrix triangularization / trigonalization in order to write a square matrix in a composition of a superior triangular matrix and a unitary matrix.

Results

Matrix Trigonalization -

Tag(s) : Matrix

Share
Share
dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Thanks to your feedback and relevant comments, dCode has developped the best Matrix Trigonalization tool, so feel free to write! Thank you !

Matrix Trigonalization

Matrix Trigonalization Calculator

Loading...
(if this message do not disappear, try to refresh this page)

Tool to calculate a matrix triangularization / trigonalization in order to write a square matrix in a composition of a superior triangular matrix and a unitary matrix.

Answers to Questions

What is the Matrix Trigonalization ? (Definition)

Matrix Trigonalisation of a square matrix $ M $ consists of writing the matrix in the form: $$ M = Q.T.Q ^ {- 1} $$

with $ T $ a upper triangular matrix and $ Q $ a unitary matrix (i.e. $ Q ^ *. Q = I $ identity matrix).

This calculation, also called Schur decomposition, uses the eigenvalues of the matrix as values of the diagonal.

Schur's theorem indicates that there is always at least one decomposition on $ \mathbb{C} $ (so the matrix is trigonalizable/triangularizable).

This trigonalization only applies to numerical or complex square matrices (without variables).

How to calculate the triangular matrix?

dCode uses Schur decomposition via computer algorithms such as QR decomposition.

Manually, for a matrix matrix $ M $, calculate its eigenvalues $ \ Lambda_i $ and deduce an eigenvector $ u_1 $

Calculate its normalized value in an orthonormal base $ {u_1, v_2} $ in order to obtain $ U = [u_1, v_2] $

Then express the matrix in the orthonormal base $ A_{{u_1,v_2}} = U^{-1}.A.U = U^{T}.A.U $

Finally, repeat the operation for each eigenvector in order to obtain the triangular matrix.

For a 2x2 matrix, only one operation is necessary and $ T = A_{{u_1,v_2}} $

Example: Schur triangulation for the matrix $ M = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} $ gives $$ Q = \begin{pmatrix} 0.909 & 0.415 \\ -0.415 & 0.909 \end{pmatrix}, T = \begin{pmatrix} 5.37 & −1 \\ 0 & −0.37 \end{pmatrix} $$

Source code

dCode retains ownership of the source code of the script Matrix Trigonalization online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Matrix Trigonalization script for offline use on PC, iPhone or Android, ask for price quote on contact page !

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developped the best Matrix Trigonalization tool, so feel free to write! Thank you !


Source : https://www.dcode.fr/matrix-trigonalization
© 2020 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback