dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day! A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!

Tool to find an equation from its points, its coordinates x, y=f(x) according to some interpolation methods and equation finder algorithms

Answers to Questions

How to find an equation from a set of points?

To derive the equation of a function from a table of values (or a curve), there are several mathematical methods.

Method 1: detect remarkable solutions, like remarkable identities, it is sometimes easy to find the equation by analyzing the values (by comparing two successive values or by identifying certain precise values).

Example: a function has for points (couples $ (x,y) $) the coordinates: $ (1,2) (2,4), (3,6), (4,8) $, the ordinates increase by 2 while the abscissas increase by 1, the solution is trivial: $ f (x) = 2x $

Method 2: use a interpolation function, more complicated, this method requires the use of mathematical algorithms that can find polynomials passing through any points. The most well known interpolations are Lagrangian interpolation and Neville interpolation.

NB: for a given set of points there is an infinity of solutions because there are infinite functions passing through certain points. dCode tries to propose the most simplified solutions possible, based on affine function or polynomial of low degree (degree 2 or 3).

Source code

dCode retains ownership of the source code of the script Equation Finder online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Equation Finder script for offline use on PC, iPhone or Android, ask for price quote on contact page !