Tool to make automatic square completion. The square completion is a calculation method allowing to factor a quadratic polynomial expression using polynomial depression.

Completing the Square - dCode

Tag(s) : Mathematics, Symbolic Computation

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!

You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? *Contact-me*!

Sponsored ads

Tool to make automatic square completion. The square completion is a calculation method allowing to factor a quadratic polynomial expression using polynomial depression.

dCode can complete the square by depressing a polynomial expression

Consider \( x^2 +bx + c = 0 \) and add \( (b/2)^2 - c - (b/2)^2 + c (= 0) \) that allows factorizing in $$ (x +(b/2))^2 - (b/2)^2 + c $$

Example: Consider \( p(x)=2x^2+12x+14 \), in order to complete the square hand, factorize the coefficient of \( x^2 \) : \( p(x)=2(x^2+6x+7) \) and continue with \( q(x) = x^2+6x+7 \)

Example: Identify the coefficient of \( x \), here \( 6 \) and divide it by \( 2 \) to get \( β=6/2=3 \) and use \( β \) to write $$ q(x) = x^2 + 6x + 7 = (x+3)^2 − β^2 + 7 = (x+3)^2 − 2 $$

Example: Back to \( p(x) = 2q(x) \) to get the completed square: $$ p(x)=2x^2+12x+14=2((x+3)^2−2)=2(x+3)^2−6 $$

With the factorized form, it becomes simple to find the roots.

$$ p(x) = 0 \iff 2(x+3)^2−6 = 0 \iff (x+3)^2 = 3 \\ \iff x+3 = \pm \sqrt{3} \iff x = \pm \sqrt{3} - 3 $$

dCode can generalize the approach to other polynomials of order \( n \) superior to 2 by removing the term of degree \( n-1 \).

dCode retains ownership of the source code of the script Completing the Square online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, etc.) which dCode owns rights can be transferred after sales quote. So if you need to download the online Completing the Square script for offline use, for you, your company or association, see you on contact page !

completion,complete,square,factorization,factor,factorize,polynomial,quadratic

Source : https://www.dcode.fr/square-completion

© 2017 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode