Tool to reduce fractions in lowest term. A Fraction in Lowest Terms (Irreducible Fraction) is a reduced fraction in shich the numerator and the denominator are coprime (they do not share common factors)

Irreducible Fractions - dCode

Tag(s) : Arithmetics, Symbolic Computation

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!

A suggestion ? a feedback ? a bug ? an idea ? *Write to dCode*!

Tool to reduce fractions in lowest term. A Fraction in Lowest Terms (Irreducible Fraction) is a reduced fraction in shich the numerator and the denominator are coprime (they do not share common factors)

To simplify a fraction $ a / b $ or $ frac{a}{b} $ composed of a numerator $ a $ and a denominator $ b $, find the greatest common divisor (GCD) of the numbers $ a $ and $ b $. The **irreducible fraction** is obtained by dividing the numerator and the denominator by the calculated GCD.

__Example:__ The fraction $ 12/10 $ has $ 12 $ for numerator and $ 10 $ for denominator. Calculate that $ GCD(12,10) = 2 $ and divide both the numerator $ 12/2 = 6 $ and the denominator $ 10/2 = 5 $, so the corresponding **irreducible fraction** is $ 6/5 $

dCode offers tools to calculate the GCD via, for example, Euclid's algorithm.

Use the aboce calculator form: enter the expressions / fractions and the simplifier will use formal calculations in order to keep variables and find the irreducible form of the division (fraction in lowest term).

If the number has a **limited decimal development** then it only needs to be multiplied by the right power of 10, then simplify the fraction and solve the equation.

__Example:__ The number $ 0.14 $ is equivalent to $ 0.14/1 $, multiply by $ 10/10 (=1) $ until having no comma: $ 0.14/1 = 1.4/10 = 14/100 $ then simplify $ 14/100 = 7/50 $

If the number has a **non finite decimal expansion** then it is necessary to locate the repeating portion of the number after the repeating decimal point.

__Example:__ The number $ 0.166666666 ... $ where the $ 6 $ is repeated

By calling $ x $ the number, and $ n $ the size (number of digits) of the smallest repeated portion. To obtain a fraction, multiply $ x $ by $ 10^n $ and then subtract $ x $.

__Example:__ $ x = 0.1666666 ... $, the smallest repeated portion is $ 6 $, which has a single digit so that $ n = 1 $. Then compute $ 10^1 \ times x = 1.6666666 ... $ and $ 10x-x $. $$ 10x-x = 9x = 1.666666 ... - 0.1666666 ... = 1.5 \\ \iff 9x = 1.5 \\ \Rightarrow x = 1.5 / 9 = 15/90 = 1/6 $$ So $ 1/6 = 0.1666666 ... $

dCode retains ownership of the online 'Irreducible Fractions' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (PHP, Java, C#, Python, Javascript, Matlab, etc.) no data, script or API access will be for free, same for Irreducible Fractions download for offline use on PC, tablet, iPhone or Android !

Please, check our community Discord for help requests!

fraction,irreducible,lowest,term,numerator,denominator,algorithm,euclide,simplify,simplification,division,calculator

Source : https://www.dcode.fr/irreducible-fraction

© 2020 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.

Feedback

▲