Search for a tool
Domain of Derivative of a Function

Tool to calculate the domain of definition of a function f(x), ie. the set of values x which exists through the derivative f'(x).

Results

Domain of Derivative of a Function -

Tag(s) : Functions

Share
Share
dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our community Discord for help requests!


Thanks to your feedback and relevant comments, dCode has developped the best Domain of Derivative of a Function tool, so feel free to write! Thank you !

Domain of Derivative of a Function

Sponsored ads

Calculation of a Function's Domain of Derivative





Tool to calculate the domain of definition of a function f(x), ie. the set of values x which exists through the derivative f'(x).

Answers to Questions

How to calculate the domain of derivative of a function?

Calculating the derivation domain of a function is to calculate the set of definition of its derivative function. Check in $ \mathbb {R} = ] -\infty; +\infty [ $, the values for which the derivative function is not defined. That is, the values of $ x $ such that $ f'(x) $ does not exist.

The calculation of the derivation domain is thus composed of 2 steps:

Step 1: Calculate the derivative of the function

Step 2: Calculate the definition domain of the derivative calculated at step 1

Example: $ f(x) \ln(x) = \log(x) $ is defined over $ \mathbb {R}^{*+} = ] 0 ; +\infty [ $, its derivative is $ f'(x) = \frac{1}{x} $. Which definition domain is $ \mathbb{R}^* = ] -\infty; 0 [ \cup ] 0; +\infty [ $

What is the domain of derivability of a rational function?

A rational function of the form $ f(x) = \frac{P(x)}{Q(x)} $ has the same definition domain as its derivative. So any rational function is derivable on its own domain of definition.

Indeed, the derivative $ f'(x) = \frac{ P'(x)Q(x) - P(x)Q' }{ Q(x)^2} $ does not modify its domain of definition.

Source code

dCode retains ownership of the online 'Domain of Derivative of a Function' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (PHP, Java, C#, Python, Javascript, Matlab, etc.) no data, script or API access will be for free, same for Domain of Derivative of a Function download for offline use on PC, tablet, iPhone or Android !

Need Help ?

Please, check our community Discord for help requests!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developped the best Domain of Derivative of a Function tool, so feel free to write! Thank you !


Source : https://www.dcode.fr/domain-derivative-function
© 2020 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback