Tool to compute continued fractions. A continued fraction is the representation of a number N in a form of a series of integers (a0, a1, ..., an) such as N = (a0+1/(a1+1/(a2+1/(...1/(an))).

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day! A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!

Tool to compute continued fractions. A continued fraction is the representation of a number N in a form of a series of integers (a0, a1, ..., an) such as N = (a0+1/(a1+1/(a2+1/(...1/(an))).

Answers to Questions

How to calculate a continued fraction?

Continued fraction expansion is close to algorithm of euclidean division, as for PGCD.

Example: If the fraction approximating pi is \( 355/113 = 3.14159292035... \)

How to calculate the continued fraction of a root?

Calculate an approximate value of the root (as accurate as possible) and dCode will provide the corresponding continuous fraction.

How to write a continued fraction in LaTex?

The easiest way is to use cfrac: $$ e=2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{ 1+\cfrac{1}{1+\cfrac{1}{4+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{6+\cdots}}}}}}}} $$

But the shortest way is to write $$ e = [2 ; 1, 2, 1, 1, 4, 1, 1, 6, \cdots] $$

Which are the most remarquable continued fractions?

Most known continued fractions are:

- Square Root of 2: \( \sqrt{2} = [1;2,2,2,2,2,\cdots] \)

- Golden Ratio: \( \Phi = [1;1,1,1,1,1,\cdots] \)

Source code

dCode retains ownership of the source code of the script Continued Fractions online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be given for free. To download the online Continued Fractions script for offline use on PC, iPhone or Android, ask for price quote on contact page !