Search for a tool
Confidence Interval of a Survey

Tool for measuring the upper and lower bounds of the confidence interval attributable to a survey. The 95% or 99% confidence interval makes it possible to better qualify the quality of a survey.

Results

Confidence Interval of a Survey -

Tag(s) : Statistics

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Thanks to your feedback and relevant comments, dCode has developed the best 'Confidence Interval of a Survey' tool, so feel free to write! Thank you!

Confidence Interval of a Survey

Survey Confidence Interval Calculator






Answers to Questions (FAQ)

What is a confidence interval? (Definition)

Definition: A confidence interval is a lower and upper bound that defines a margin of error for the raw results of a survey. The confidence interval evaluates the quality and accuracy of the estimate obtained with the sample surveyed.

This interval applies to all types of survey / sampling (street interviews, online surveys) in order to evaluate the trust score that can be attributed to it.

The frequency observed in a sample is noted $ f $ and the probability in the total population is noted $ p $, these values are often confused.

How to calculate a confidence interval?

For a survey of $ N $ people resulting in the frequency $ f $ and the probability $ p $, then the 95% confidence interval is $$ \left[p-1.96\frac{\sqrt{f(1-f)}}{\sqrt n},p+1.96\frac{\sqrt{p(1-p)}}{\sqrt n}\right] $$

With 1.96 the value of the 2.5 percentile of the normal distribution (for 99%, the value will be 2.58).

Example: For a poll with a sample of 80 people of whom 60 declare voting YES, the frequency is $ f = 60/80 $ and the probability $ p = 0.75 $, the confidence interval is $ \left[0.75-1.96\frac{\sqrt{0.75(1-0.75)}}{\sqrt 80},0.75+1.96\frac{\sqrt{0.75(1-0.75)}}{\sqrt 80}\right] = \left[ 0.655, 0.845 \right] $. This means that there is 95% chance in the final vote the YES result is between 65.5% and 84.5%.

What is the rule of three?

When the probability is close to 0, the calculation of the confidence interval can lead to probabilities outside the interval $ [0,1] $ which is impossible. One rule is to use the limit as $ 3 / N $.

Example: A poll of $ N = 100 $ people gives a probability of 0, then the confidence interval is $ [0, 0.03] $, a percentage between 0 and 3%.

Source code

dCode retains ownership of the online 'Confidence Interval of a Survey' tool source code. Except explicit open source licence (indicated CC / Creative Commons / free), any 'Confidence Interval of a Survey' algorithm, applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any 'Confidence Interval of a Survey' function (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and no data download, script, copy-paste, or API access for 'Confidence Interval of a Survey' will be for free, same for offline use on PC, tablet, iPhone or Android ! dCode is free and online.

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Thanks to your feedback and relevant comments, dCode has developed the best 'Confidence Interval of a Survey' tool, so feel free to write! Thank you!


Source : https://www.dcode.fr/confidence-interval-survey
© 2021 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaching / CTF.
Feedback