Search for a tool
Base N Convert

Tool to write numbers in base N (change of basis / convert). In numeral systems, a base (radix) is the value of successive powers when writing a number.

Results

Base N Convert -

Tag(s) : Arithmetics

Share
Share
dCode and you

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Base N Convert tool. Thank you.

Base N Convert

Sponsored ads

Base Conversion Calculator (advanced)







Converting Base 10 to Base N



Tool to write numbers in base N (change of basis / convert). In numeral systems, a base (radix) is the value of successive powers when writing a number.

Answers to Questions

What are default symbols?

A number in base 10 is written with the digits' 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9` are used. For other bases, it is common to use letters, more precisely the following characters: 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ (Beware to lowercase and uppercase from base 37)

How to convert from a base to another?

A number $ N $ in base $ b $ can be written with an addition of powers in this base $ b $.

Example: The number $ N = 123_{(10)} $ (base 10) verifies the equality $$ N = 789 = 7 \times 100 + 8 \times 10 + 9 \times 1 = 7 \times 10^2 + 8 \times 10^1 + 9 \times 10^0 $$

$ N= $$ c2 $$ c1 $$ c0 $
$ 789 $$ 7 $$ 8 $$ 9 $

Take a number $ N $ made of $ n $ digits $ { c_{n-1}, c_{n-2}, ..., c_2, c_1, c_0 } $ in base $ b $, it can be written it as a polynomial:

$$ N_{(b)} = \{ c_{n-1}, ..., c_1, c_0 \}_{(b)} = c_{n-1} \times b^{n-1} + ... + c_1 \times b^1 + c_0 \times b^0 $$

To compute a base change, base $ 10 $ is the reference, or an intermediate step.

Example: To change from base $ 3 $ to base $ 7 $, calculate base $ 3 $ to base $ 10 $, then from base $ 10 $ to base $ 7 $.

How to convert from base 10 to base n?

Use the following algorithm to convert from base $ 10 $ to base $ n $:

$$ q_0=n; i=0; \mbox{ while } q_i > 0 \mbox{ do } (r_i = q_i \mbox{ mod } b; q_{i+1}= q_i \mbox{ div } b ; i = i+1 ) $$

The converted number is composed of digits $ r_{i=0...n-1} $ (with $ r_0 $ the digit of the units).

Example: $ N = 123_{(10)} $ (base 10) is converted in base $ 7 $:

$$ q_0 = 123 \\ r_0 = 123 \mbox{ mod } 7 = 4 \;\;\; q_1 = 123 \mbox{ div } 7 = 17 \\ r_1 = 17 \mbox{ mod } 7 = 3 \;\;\; q_1 = 17 \mbox{ div } 7 = 2 \\ r_2 = 2 \mbox{ mod } 7 = 2 \;\;\; q_2 = 2 \mbox{ div } 7 = 0 \\ 123_{(10)} = 234_{(7)} $$

How to convert from base n to base 10?

To convert a number $ N_1 $ written in base $ b $ in a number $ N_2 $ written in base $ 10 $, use the fact that $ N_1 $ is made of $ n $ digits $ { c_{n-1}, c_{n-2}, ..., c_1, c_0 } $ and apply the following algorithm:

$$ N_2 = c_{n-1} ; \mbox{ for } ( i=n-2 \mbox{ to } 1 ) \mbox{ do } N_2=N_2 \times b+c_i $$

The number $ N_2 $ is written in base $ 10 $.

The algorithm is equivalent to the calculation $$ (( c_{n-1} \times b + c_{n-2} ) \times b + c_{n-3} ) ... ) \times b + c_0 $$

Example: Take the number $ 123_{(7)} $ (in base $ 7 $), and apply the conversion algorithm:

$$ 123 = \{1,2,3\} \\ N = 1 \\ N = 1*7+2 = 9 \\ N = 9*7+3 = 66 \\ N = 123_{(7)} = 66_{(10)} $$

So $ 123_{(7)} $ is equal to $ 66_{(10)} $ in base $ 10 $.

What are usual bases?

- base 2 (binary system - base2) in informatics

- base 3 (trinary system - base3)

- base 8 (octal system - base8)

- base 9 (nonary system - base9)

- base 10 (decimal system - base10)

- base 12 (duodecimal system - base12), for month or hours

- base 16 (hexadecimal system - base16) in informatics for bytes

- base 20 (vigesimal system - base20) by Mayas and Aztecs

- base 26 (alphabetic system - base26)

- base 36 (alphanumeric system - base36)

- base 60 (sexagesimal system - base60) for minutes, seconds by Sumerians and Babylonians.

- base 62 (full alphanumeric system - base62)

Source code

dCode retains ownership of the source code of the script Base N Convert online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Base N Convert script for offline use on PC, iPhone or Android, ask for price quote on contact page !

Questions / Comments


Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Base N Convert tool. Thank you.


Source : https://www.dcode.fr/base-n-convert
© 2019 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode
Feedback