Tool to compute an Adjoint Matrix (Adjugate) for a square matrix, name given to the transpose of the cofactors matrix.

Adjoint Matrix - dCode

Tag(s) : Mathematics,Algebra,Symbolic Computation

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!

You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? *Contact-me*!

This page is using the new English version of dCode, *please make comments* !

Sponsored ads

Tool to compute an Adjoint Matrix (Adjugate) for a square matrix, name given to the transpose of the cofactors matrix.

To calculate the adjoint matrix \( {\rm Adj} \) of the square matrix \( M \), you have to compute \( ^{\operatorname t}{\rm Cof} \) the transpose of the cofactors matrix of \( M \).

$$ {\rm Adj}=^{\operatorname t}{\rm Cof} $$

To calculate the cofactors matrix \( {\rm Cof}(M) \), you have to compute, for each value of the matrix, the determinant of the associated sub-matrix \( SM \) (called minor) and multiply with a \( -1 \) factor depending on the position in the matrix.

$$ {\rm Cof}_{i,j}=(-1)^{i+j}\text{Det}(SM_i) $$

For a 2x2 matrix: $$ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} $$

$$ {\rm Cof}(M) = \begin{pmatrix} {{d}} & {{-c}} \\ {{-b}} & {{a}} \end{pmatrix} $$

For a 3x3 matrix: $$ M = \begin{pmatrix} a & b & c \\d & e & f \\ g & h & i \end{pmatrix} $$

$$ {\rm Cof}(M) = \begin{pmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ & & \\ -\begin{vmatrix} b & c \\ h & i \end{vmatrix} & +\begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ & & \\ +\begin{vmatrix} b & c \\ e & f \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} & +\begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{pmatrix} $$

To get the adjoint matrix, you can take the transposed of the calculated cofactor matrix$$ {\rm Adj}(M) = \begin{pmatrix} {{d}} & {{-b}} \\ {{-c}} & {{a}} \end{pmatrix} $$

For example : $$ M = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} \Rightarrow {\rm Cof}(M) = \begin{pmatrix} {{1}} & {{-2}} \\ {{-3}} & {{4}} \end{pmatrix} \Rightarrow {\rm Adj}(M) = \begin{pmatrix} {{1}} & {{-3}} \\ {{-2}} & {{4}} \end{pmatrix} $$

dCode retains ownership of the source code of the script Adjoint Matrix. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, etc.) which dCode owns rights can be transferred after sales quote. So if you need to download the Adjoint Matrix script for offline use, for you, your company or association, see you on contact page !

adjoint,adjugate,comatrix,cofactor,matrix,minor,determinant

Source : http://www.dcode.fr/adjoint-matrix

© 2017 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode