Search for a tool

Tool for decrypting / encrypting codes representing matrix drawings on a numeric keypad from a computer keyboard or a telephone 123456789.

Results

Tag(s) : Substitution Cipher, Informatics

Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Feedback and suggestions are welcome so that dCode offers the best 'Numeric Keypad Draw' tool for free! Thank you!

### How to encrypt using keypad drawing cipher?

Encryption with a numeric keypad consists of drawing each character via a 3x3 (or 3x4) dot matrix symbolized by the keypad itself (the numbers pad usually to the right of the keyboard).

Example: To encrypt the letters D,C,O,D,E, imagine using the numeric keypad of a computer and the keys `78 | 89 | 789 | 78 | 7894 5 | 4 | 4 6 | 4 5 | 45 12 | 23 | 123 | 12 | 123`

The order of the keys is usually not important, but can help to recognize the drawn character.

Example: D can be encoded 124578

The computer numeric keypad and mobile/cell phone keypad have inverted digits (123 is at the bottom for one and at the top for the other one). The phone mode also accepts the characters * (star), 0 (zero) and # (pound). The other keys are ignored (Num lock, +, -, *, /).

### How to decrypt keypad drawing cipher?

Decryption requires the knowledge of the numeric keypad used and to note the keys in order to deduce the drawing of a character.

Example: From the message 1478965,14789635,147862, can be infered the drawings: `789 | 789 | 78 456 | 456 | 4 51 | 1 3 | 12 ` thus, the plain message is PAD.

### How to recognize a keypad ciphertext?

The message consists of the characters of a numeric keypad, namely 123456789*0#

### What are the possible combinations?

Numeric codes that draw a symbol on a 3x3 9-digit grid are limited:

1-digit combinations

Example: 1, 2, 3, 4, 5, 6, 7, 8, 9

2-digit combinations

Example: 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89

3-digit combinations

Example: 123, 124, 125, 126, 127, 128, 129, 134, 135, 136, 137, 138, 139, 145, 146, 147, 148, 149, 156, 157, 158, 159, 167, 168, 169, 178, 179, 189, 234, 235, 236, 237, 238, 239, 245, 246, 247, 248, 249, 256, 257, 258, 259, 267, 268, 269, 278, 279, 289, 345, 346, 347, 348, 349, 356, 357, 358, 359, 367, 368, 369, 378, 379, 389, 456, 457, 458, 459, 467, 468, 469, 478, 479, 489, 567, 568, 569, 578, 579, 589, 678, 679, 689, 789

4-digit combinations

Example: 1234, 1235, 1236, 1237, 1238, 1239, 1245, 1246, 1247, 1248, 1249, 1256, 1257, 1258, 1259, 1267, 1268, 1269, 1278, 1279, 1289, 1345, 1346, 1347, 1348, 1349, 1356, 1357, 1358, 1359, 1367, 1368, 1369, 1378, 1379, 1389, 1456, 1457, 1458, 1459, 1467, 1468, 1469, 1478, 1479, 1489, 1567, 1568, 1569, 1578, 1579, 1589, 1678, 1679, 1689, 1789, 2345, 2346, 2347, 2348, 2349, 2356, 2357, 2358, 2359, 2367, 2368, 2369, 2378, 2379, 2389, 2456, 2457, 2458, 2459, 2467, 2468, 2469, 2478, 2479, 2489, 2567, 2568, 2569, 2578, 2579, 2589, 2678, 2679, 2689, 2789, 3456, 3457, 3458, 3459, 3467, 3468, 3469, 3478, 3479, 3489, 3567, 3568, 3569, 3578, 3579, 3589, 3678, 3679, 3689, 3789, 4567, 4568, 4569, 4578, 4579, 4589, 4678, 4679, 4689, 4789, 5678, 5679, 5689, 5789, 6789

5-digit combinations

Example: 12345, 12346, 12347, 12348, 12349, 12356, 12357, 12358, 12359, 12367, 12368, 12369, 12378, 12379, 12389, 12456, 12457, 12458, 12459, 12467, 12468, 12469, 12478, 12479, 12489, 12567, 12568, 12569, 12578, 12579, 12589, 12678, 12679, 12689, 12789, 13456, 13457, 13458, 13459, 13467, 13468, 13469, 13478, 13479, 13489, 13567, 13568, 13569, 13578, 13579, 13589, 13678, 13679, 13689, 13789, 14567, 14568, 14569, 14578, 14579, 14589, 14678, 14679, 14689, 14789, 15678, 15679, 15689, 15789, 16789, 23456, 23457, 23458, 23459, 23467, 23468, 23469, 23478, 23479, 23489, 23567, 23568, 23569, 23578, 23579, 23589, 23678, 23679, 23689, 23789, 24567, 24568, 24569, 24578, 24579, 24589, 24678, 24679, 24689, 24789, 25678, 25679, 25689, 25789, 26789, 34567, 34568, 34569, 34578, 34579, 34589, 34678, 34679, 34689, 34789, 35678, 35679, 35689, 35789, 36789, 45678, 45679, 45689, 45789, 46789, 56789

6-digit combinations

Example: 123456, 123457, 123458, 123459, 123467, 123468, 123469, 123478, 123479, 123489, 123567, 123568, 123569, 123578, 123579, 123589, 123678, 123679, 123689, 123789, 124567, 124568, 124569, 124578, 124579, 124589, 124678, 124679, 124689, 124789, 125678, 125679, 125689, 125789, 126789, 134567, 134568, 134569, 134578, 134579, 134589, 134678, 134679, 134689, 134789, 135678, 135679, 135689, 135789, 136789, 145678, 145679, 145689, 145789, 146789, 156789, 234567, 234568, 234569, 234578, 234579, 234589, 234678, 234679, 234689, 234789, 235678, 235679, 235689, 235789, 236789, 245678, 245679, 245689, 245789, 246789, 256789, 345678, 345679, 345689, 345789, 346789, 356789, 456789

7-digit combinations

Example: 1234567, 1234568, 1234569, 1234578, 1234579, 1234589, 1234678, 1234679, 1234689, 1234789, 1235678, 1235679, 1235689, 1235789, 1236789, 1245678, 1245679, 1245689, 1245789, 1246789, 1256789, 1345678, 1345679, 1345689, 1345789, 1346789, 1356789, 1456789, 2345678, 2345679, 2345689, 2345789, 2346789, 2356789, 2456789, 3456789

8-digit combinations

Example: 12345678, 12345679, 12345689, 12345789, 12346789, 12356789, 12456789, 13456789, 23456789

9-digit combination

Example: 123456789

## Source code

dCode retains ownership of the "Numeric Keypad Draw" source code. Except explicit open source licence (indicated Creative Commons / free), the "Numeric Keypad Draw" algorithm, the applet or snippet (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or the "Numeric Keypad Draw" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) and all data download, script, or API access for "Numeric Keypad Draw" are not public, same for offline use on PC, mobile, tablet, iPhone or Android app!
Reminder : dCode is free to use.

## Cite dCode

The copy-paste of the page "Numeric Keypad Draw" or any of its results, is allowed (even for commercial purposes) as long as you cite dCode!
Exporting results as a .csv or .txt file is free by clicking on the export icon
Cite as source (bibliography):

## Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!