Search for a tool
Armstrong Number

Tool to test if a number is an Armstrong number, explaining the calculation step by step and exploring narcissistic numbers in base 10.

Results

Armstrong Number -

Tag(s) : Arithmetics

Share
Share
dCode and more

dCode is free and its tools are a valuable help in games, maths, geocaching, puzzles and problems to solve every day!
A suggestion ? a feedback ? a bug ? an idea ? Write to dCode!


Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!


Feedback and suggestions are welcome so that dCode offers the best 'Armstrong Number' tool for free! Thank you!

Armstrong Number

Armstrong Number Checker


See also: Sum of Squares

Answers to Questions (FAQ)

What is an Armstrong number? (Definition)

An Armstrong number (also called a narcissistic number or pluperfect number) is a non-negative natural number expressed in base 10 with $ n $ digits and equal to the sum of the nth powers of each of its digits.

In other words, if a number $ N $ can be written with the digits $ d_1, d_2, \dots, d_n $, then $ N = d_1^n + d_2^n + \dots + d_n^n $

Example: $ 153 $ is an Armstrong number because it has $ 3 $ digits and $ 1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153 $

How to verify if a number is Armstrong?

To check if a number is an Armstrong number:

— Count the number of digits $ n $ in the number

— Extract each digit and calculate its nth power

— Calculate the sum of these powers

— Compare the sum to the original number

If the two values are equal, the number is an Armstrong number!

Example: 9474 has 4 digits, n=4, and $ 9^4 + 4^4 + 7^4 + 4^4 = 6561 + 256 + 2401 + 256 = 9474 $, therefore 9474 is an Armstrong number

What are the earliest known Armstrong numbers?

The complete list of Armstrong numbers is finite and known; it contains 89 terms:

RankNumber of DigitsArmstrong Number
110
211
312
413
514
615
716
817
918
1019
113153
123370
133371
143407
1541634
1648208
1749474
18554748
19592727
20593084
216548834
2271741725
2374210818
2479800817
2579926315
26824678050
27824678051
28888593477
299146511208
309472335975
319534494836
329912985153
33104679307774
341132164049650
351132164049651
361140028394225
371142678290603
381144708635679
391149388550606
401182693916578
411194204591914
421428116440335967
43164338281769391370
44164338281769391371
451721897142587612075
461735641594208964132
471735875699062250035
48191517841543307505039
49193289582984443187032
50194498128791164624869
51194929273885928088826
522063105425988599693916
5321128468643043731391252
5421449177399146038697307
552321887696841122916288858
562327879694893054074471405
572327907865009977052567814
582328361281321319229463398
592335452590104031691935943
6024174088005938065293023722
6124188451485447897896036875
6224239313664430041569350093
63251550475334214501539088894
64251553242162893771850669378
65253706907995955475988644380
66253706907995955475988644381
67254422095118095899619457938
6827121204998563613372405438066
6927121270696006801314328439376
7027128851796696487777842012787
7127174650464499531377631639254
7227177265453171792792366489765
732914607640612971980372614873089
742919008174136254279995012734740
752919008174136254279995012734741
762923866716435523975980390369295
77311145037275765491025924292050346
78311927890457142960697580636236639
79312309092682616190307509695338915
803217333509997782249308725103962772
8133186709961001538790100634132976990
8233186709961001538790100634132976991
83341122763285329372541592822900204593
843512639369517103790328947807201478392
853512679937780272278566303885594196922
86371219167219625434121569735803609966019
873812815792078366059955099770545296129367
8839115132219018763992565095597973971522400
8939115132219018763992565095597973971522401

The largest therefore has 39 digits.

The list is referenced on OEIS A005188 here

Why is the list finished?

A rigorous mathematical proof can be provided using the theorem of comparative growth.

An n-digit number becomes very large very quickly as n increases.

The sum of the powers of its digits increases much more slowly.

Beyond a certain number of digits, the sum can no longer catch up with the number itself.

How to programmatically verify an Armstrong number?

Here is an example of source code in Python:// Python

def is_armstrong(n):

m = len(str(n))

sum = sum(int(d)**m for d in str(n))

return sum == n

Why are the numbers called Armstrong?

These numbers were named in reference to Michael F. Armstrong, a mathematician who popularized these numbers in the 1960s.

Source code

dCode retains ownership of the "Armstrong Number" source code. Any algorithm for the "Armstrong Number" algorithm, applet or snippet or script (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, breaker, translator), or any "Armstrong Number" functions (calculate, convert, solve, decrypt / encrypt, decipher / cipher, decode / encode, translate) written in any informatic language (Python, Java, PHP, C#, Javascript, Matlab, etc.) or any database download or API access for "Armstrong Number" or any other element are not public (except explicit open source licence). Same with the download for offline use on PC, mobile, tablet, iPhone or Android app.
Reminder: dCode is an educational and teaching resource, accessible online for free and for everyone.

Cite dCode

The content of the page "Armstrong Number" and its results may be freely copied and reused, including for commercial purposes, provided that dCode.fr is cited as the source (Creative Commons CC-BY free distribution license).

Exporting the results is free and can be done simply by clicking on the export icons ⤓ (.csv or .txt format) or ⧉ (copy and paste).

To cite dCode.fr on another website, use the link: https://www.dcode.fr/armstrong-number

In a scientific article or book, the recommended bibliographic citation is: Armstrong Number on dCode.fr [online website], retrieved on 2026-01-29, https://www.dcode.fr/armstrong-number

Need Help ?

Please, check our dCode Discord community for help requests!
NB: for encrypted messages, test our automatic cipher identifier!

Questions / Comments

Feedback and suggestions are welcome so that dCode offers the best 'Armstrong Number' tool for free! Thank you!


https://www.dcode.fr/armstrong-number
© 2026 dCode — The ultimate collection of tools for games, math, and puzzles.
â–˛  
Feedback