〜 ★ dCode presents ★ 〜

Asymptote of a Function

Tool to find the equations of the asymptotes (horizontal, vertical, oblique) of a function. The asymptotes are lines that tend (similar to a tangent) to function towards infinity.

Asymptotes of a Function Calculator

Answers to Questions

How to find an horizontal asymptote?

A function $ f(x) $ has an horizontal asymptote $ y = a $ if

$$ \lim\limits_{x \rightarrow +\infty} f(x)=a \mbox{ or } \lim\limits_{x \rightarrow -\infty} f(x)=a \mbox{ (or both)} $$

Example: $ 1/x $ has for asymtote $ y=0 $ because $ \lim\limits_{x \rightarrow \infty} 1/x = 0 $

There can not be more than 2 horizontal asymptotes.

How to find a vertical asymptote?

A function $ f(x) $ has a vertical asymptote $ x = a $ if it admits an infinite limit in $ a $ ($ f $ tends to infinity).

$$ \lim\limits_{x \rightarrow \pm a} f(x)=\pm \infty $$

Example: $ 1/x $ has for asymtote $ x=0 $ because $ \lim\limits_{x \rightarrow 0} 1/x = \infty $

Generally, the function is not defined in $ a $, it is necessary to analyze the domain of the function to find potential asymptotes.

There may be an infinite number of vertical asymptotes.

How to find a slant/oblique asymptote?

A function $ f(x) $ has a slant asymptote $ g(x)=ax+b $ when

$$ \lim\limits_{x \rightarrow \pm \infty} \left( f(x)-g(x)= 0 \right) $$

Computation of slant asymptote may be simplified by calculating this limit :

$$ \lim\limits_{x \rightarrow \pm \infty} \left( \frac{f(x)}{g(x)} = 1 \right) $$

How to find a non-linear asymptote?

A function $ f(x) $ has a non-linear asymptote $ g(x) $ when

$$ \lim\limits_{x \rightarrow \pm \infty} \left( f(x)-g(x)= 0 \right) $$

The method is the same as the oblique asymptote calculation.

Source code

dCode retains ownership of the source code of the script Asymptote of a Function online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be given for free. To download the online Asymptote of a Function script for offline use on PC, iPhone or Android, ask for price quote on contact page !

Questions / Comments

Team dCode likes feedback and relevant comments; to get an answer give an email (not published). It is thanks to you that dCode has the best Asymptote of a Function tool. Thank you.

Source : https://www.dcode.fr/asymptote-function