Tool to calculate the integral of a function. The computation of an definite integral over an interval consist in measuring the area under the curve of the function to integrate.

Definite Integral - dCode

Tag(s) : Mathematics

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!

You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? *Contact-me*!

This page is using the new English version of dCode, *please make comments* !

Sponsored ads

This page deals with integral calculation on an interval. For the general case, see the calculation of primitives.

Tool to calculate the integral of a function. The computation of an definite integral over an interval consist in measuring the area under the curve of the function to integrate.

To perform an integral calculation, you must calculate the corresponding primitive function.

Consider a function \( f(x) \) to be integrated over \( [a;b] \) and \( F(x) \) the primitive of \( f(x) \). Then $$ \int^b_a f(x) \mathrm{ dx} = F(b)-F(a) $$

Consider \( f(x) = x \) to inegrate over the interval \( [0;1] \). You can calculate its primitive \( F(x) = \frac{1}{2} x^2 \) and so integral $$ \int^1_0 f(x) \mathrm {dx} = F(1) - F(0) = \frac{1}{2} $$

Enter the function, its lower and upper bounds and the variable to integrate, dCode will make the computation.

Function | Primitive |
---|---|

$$ \int \,\rm dx$$ | $$x + C$$ |

$$ \int x^n\,\rm dx$$ | $$ \frac{x^{n+1}}{n+1} + C \qquad n \ne -1 $$ |

$$ \int \frac{1}{x}\,\rm dx$$ | $$\ln \left| x \right| + C \qquad x \ne 0 $$ |

$$ \int \frac{1}{x-a} \, \rm dx $$ | $$\ln | x-a | + C \qquad x \ne a $$ |

$$ \int \frac{1}{(x-a)^n} \, \rm dx$$ | $$-\frac{1}{(n-1)(x-a)^{n-1}} + C \qquad n \ne 1 , x \ne a $$ |

$$ \int \frac{1}{1+x^2} \, \rm dx$$ | $$\operatorname{arctan}(x) + C $$ |

$$ \int \frac{1}{a^2+x^2} \, \rm dx$$ | $$\frac{1}{a}\operatorname{arctan}{ \left( \frac{x}{a} \right) } + C \qquad a \ne 0 $$ |

$$ \int \frac{1}{1-x^2} \, \rm dx$$ | $$\frac{1}{2} \ln { \left| \frac{x+1}{x-1} \right| } + C $$ |

$$ \int \ln (x)\,\rm dx$$ | $$x \ln (x) - x + C $$ |

$$ \int \log_b (x)\,\rm dx$$ | $$x \log_b (x) - x \log_b (e) + C $$ |

$$ \int e^x\,\rm dx$$ | $$e^x + C $$ |

$$ \int a^x\,\rm dx$$ | $$\frac{a^x}{\ln (a)} + C \qquad a > 0 , a \ne 1 $$ |

$$ \int {1 \over \sqrt{1-x^2}} \, \rm dx$$ | $$\operatorname{arcsin} (x) + C $$ |

$$ \int {-1 \over \sqrt{1-x^2}} \, \rm dx$$ | $$\operatorname{arccos} (x) + C $$ |

$$ \int {x \over \sqrt{x^2-1}} \, \rm dx$$ | $$\sqrt{x^2-1} + C $$ |

$$ \int \sin(x)\,\rm dx $$ | $$ -\cos(x)+C $$ |

$$ \int \cos(x)\,\rm dx $$ | $$ \sin(x)+C $$ |

$$ \int \tan(x)\,\rm dx $$ | $$ -\ln|\cos(x)|+C $$ |

dCode retains ownership of the source code of the script Definite Integral. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, etc.) which dCode owns rights can be transferred after sales quote. So if you need to download the Definite Integral script for offline use, for you, your company or association, see you on contact page !

integral,function,integration,integrate,calculus,derivative,antiderivative,primitive

Source : http://www.dcode.fr/definite-integral

© 2017 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode