Search for a tool
Collatz Conjecture

Tool to test the Collatz conjecture: successive operations on a number as dividing it by 3 if it is even and else multiply it by 3 and add 1. The conjecture says that the sequence ends with 1.

Results

Collatz Conjecture -

Tag(s) : Mathematics, Fun

dCode and you

dCode is free and its tools are a valuable help in games, puzzles and problems to solve every day!
You have a problem, an idea for a project, a specific need and dCode can not (yet) help you? You need custom development? Contact-me!

Team dCode read all messages and answer them if you leave an email (not published). It is thanks to you that dCode has the best Collatz Conjecture tool. Thank you.

# Collatz Conjecture

## Custom Collatz Conjecture

Tool to test the Collatz conjecture: successive operations on a number as dividing it by 3 if it is even and else multiply it by 3 and add 1. The conjecture says that the sequence ends with 1.

### How to calculate the Collatz conjecture?

The conjecture use the following algorithm: If n is even, divide it by 2, else multiply by 3 and add 1. Start over until you get 1.

Example: n=10, 10 is even, divide it by 2 and get 5,
5 is odd, multiply it by 3 and add 1 to get 16,
The you'll get 8, 4, 2 and 1.

### Is there any number that does not obey to Collatz Conjecture rules?

No, nobody has found a number for which it does not work and nobody has found any mathematical proof that the conjecture is always true.

### How to code Collatz conjecture?

// Javascriptfunction step(n) { if (n%2 == 0) return n/2; return 3*n+1;}function collatz(n) { var nb = 1; while (n != 1) { n = step(n); nb++; } return nb;}.

### What are the other names of this conjecture?

The Collatz conjecture is also known as

- 3n + 1 conjecture

- Ulam conjecture

- Kakutani's problem

- Thwaites conjecture

- Hasse's algorithm

- Syracuse problem

### What are the numbers with a given stopping time?

This table is for numbers until 1000 (total time => numbers)

0 1 2 4 8 16 5, 32 10, 64 3, 20, 21, 128 6, 40, 42, 256 12, 13, 80, 84, 85, 512 24, 26, 160, 168, 170 48, 52, 53, 320, 336, 340, 341 17, 96, 104, 106, 113, 640, 672, 680, 682 34, 35, 192, 208, 212, 213, 226, 227 11, 68, 69, 70, 75, 384, 416, 424, 426, 452, 453, 454 22, 23, 136, 138, 140, 141, 150, 151, 768, 832, 848, 852, 853, 904, 906, 908, 909 7, 44, 45, 46, 272, 276, 277, 280, 282, 300, 301, 302 14, 15, 88, 90, 92, 93, 544, 552, 554, 560, 564, 565, 600, 602, 604, 605 28, 29, 30, 176, 180, 181, 184, 186, 201 9, 56, 58, 60, 61, 352, 360, 362, 368, 369, 372, 373, 401, 402, 403 18, 19, 112, 116, 117, 120, 122, 704, 720, 724, 725, 736, 738, 739, 744, 746, 753, 802, 803, 804, 805, 806 36, 37, 38, 224, 232, 234, 240, 241, 244, 245, 267 72, 74, 76, 77, 81, 448, 464, 468, 469, 480, 482, 483, 488, 490, 497, 534, 535, 537 25, 144, 148, 149, 152, 154, 162, 163, 896, 928, 936, 938, 960, 964, 965, 966, 976, 980, 981, 985, 994, 995 49, 50, 51, 288, 296, 298, 304, 308, 309, 321, 324, 325, 326, 331 98, 99, 100, 101, 102, 576, 592, 596, 597, 608, 616, 618, 625, 642, 643, 648, 650, 652, 653, 662, 663, 713, 715 33, 196, 197, 198, 200, 202, 204, 205, 217 65, 66, 67, 392, 394, 396, 397, 400, 404, 405, 408, 410, 433, 434, 435, 441, 475 130, 131, 132, 133, 134, 784, 788, 789, 792, 794, 800, 808, 810, 816, 820, 821, 833, 857, 866, 867, 868, 869, 870, 875, 882, 883, 950, 951, 953, 955 43, 260, 261, 262, 264, 266, 268, 269, 273, 289 86, 87, 89, 520, 522, 524, 525, 528, 529, 532, 533, 536, 538, 546, 547, 555, 571, 577, 578, 579, 583, 633, 635 172, 173, 174, 177, 178, 179 57, 59, 344, 346, 348, 349, 354, 355, 356, 357, 358, 385, 423 114, 115, 118, 119, 688, 692, 693, 696, 698, 705, 708, 709, 710, 712, 714, 716, 717, 729, 761, 769, 770, 771, 777, 846, 847 39, 228, 229, 230, 236, 237, 238 78, 79, 456, 458, 460, 461, 465, 472, 473, 474, 476, 477, 507, 513 153, 156, 157, 158, 912, 916, 917, 920, 922, 930, 931, 943, 944, 945, 946, 947, 948, 949, 952, 954, 971, 987 305, 306, 307, 312, 314, 315, 316, 317 105, 610, 611, 612, 613, 614, 624, 628, 629, 630, 631, 632, 634, 647, 683, 687 203, 209, 210, 211 406, 407, 409, 418, 419, 420, 421, 422, 431, 455 135, 139, 812, 813, 814, 817, 818, 819, 827, 836, 837, 838, 840, 841, 842, 843, 844, 845, 862, 863, 910, 911 270, 271, 278, 279, 281, 287, 303 540, 541, 542, 545, 551, 556, 557, 558, 561, 562, 563, 574, 575, 606, 607 185, 187, 191 361, 363, 367, 370, 371, 374, 375, 382, 383 123, 127, 721, 722, 723, 726, 727, 734, 735, 740, 741, 742, 747, 748, 749, 750, 764, 765, 766, 809, 891 246, 247, 249, 254, 255 481, 489, 492, 493, 494, 498, 499, 508, 509, 510, 539 169, 961, 962, 963, 969, 978, 979, 984, 986, 988, 989, 996, 997, 998, 999 329, 338, 339, 359 641, 657, 658, 659, 665, 676, 677, 678, 718, 719 219, 225, 239 427, 438, 439, 443, 450, 451, 478, 479 159, 854, 855, 876, 877, 878, 886, 887, 900, 901, 902, 907, 956, 957, 958 295, 318, 319 569, 585, 590, 591, 601, 636, 637, 638 379, 393, 425 758, 759, 767, 779, 786, 787, 801, 849, 850, 851 283 505, 511, 519, 566, 567 377 673, 679, 681, 699, 711, 754, 755 251 502, 503 167, 897, 905, 923 334, 335 111, 603, 615, 668, 669, 670 222, 223 444, 445, 446 799, 807, 888, 890, 892, 893 297 593, 594, 595 395 790, 791, 793 263 526, 527 175 350, 351 700, 701, 702 233 466, 467 155, 839, 932, 933, 934, 939 310, 311 103, 559, 620, 621, 622 206, 207 412, 413, 414 137, 745, 824, 826, 828, 829 274, 275 91, 548, 549, 550 182, 183, 993 364, 365, 366 121, 671, 728, 730, 732, 733, 743 242, 243 447, 484, 485, 486, 495 161, 894, 895, 968, 970, 972, 973, 977, 990, 991 322, 323 107, 644, 645, 646, 651 214, 215 71, 428, 429, 430 142, 143, 795, 856, 858, 860, 861 47, 284, 285, 286 94, 95, 568, 570, 572, 573 31, 188, 189, 190 62, 63, 376, 378, 380, 381 124, 125, 126, 752, 756, 757, 760, 762 41, 248, 250, 252, 253 82, 83, 496, 500, 501, 504, 506 27, 164, 165, 166, 992, 1000 54, 55, 328, 330, 332, 333, 337 108, 109, 110, 656, 660, 661, 664, 666, 674, 675 216, 218, 220, 221 73, 432, 436, 437, 440, 442, 449 145, 146, 147, 864, 872, 874, 880, 881, 884, 885, 898, 899, 903, 927 290, 291, 292, 293, 294, 299 97, 580, 581, 582, 584, 586, 587, 588, 589, 598, 599 193, 194, 195, 199 386, 387, 388, 389, 390, 391, 398, 399 129, 772, 773, 774, 776, 778, 780, 781, 782, 783, 785, 796, 797, 798 257, 258, 259, 265 514, 515, 516, 517, 518, 521, 523, 530, 531 171 342, 343, 345, 347, 353 684, 685, 686, 689, 690, 691, 694, 695, 697, 706, 707 231, 235 457, 459, 462, 463, 470, 471 913, 914, 915, 918, 919, 921, 924, 925, 926, 929, 935, 940, 941, 942, 959 313 609, 617, 619, 623, 626, 627, 639 411, 415, 417 811, 815, 822, 823, 825, 830, 831, 834, 835 543, 553 731, 737, 751 487, 491 967, 974, 975, 982, 983 327 649, 654, 655, 667 859, 865, 873, 879, 889 763, 775 703 937 871

### What are the numbers with a given highest number reached?

This table shows numbers until 1000 (max number reached => numbers)

1 1 2 4 8 3, 5, 6, 10, 12, 16 20 24 32 13, 26, 40 48 7, 9, 11, 14, 17, 18, 22, 28, 34, 36, 44, 52 56 21, 42, 64 68 72 80 84 19, 25, 29, 38, 50, 58, 76, 88 96 33, 66, 100 104 37, 74, 112 116 128 132 45, 90, 136 144 49, 98, 148 152 15, 23, 30, 35, 46, 53, 60, 70, 92, 106, 120, 140, 160 168 176 180 61, 122, 184 192 43, 57, 65, 86, 114, 130, 172, 196 200 69, 138, 208 212 224 228 51, 77, 102, 154, 204, 232 240 81, 162, 244 85, 170, 256 260 264 272 276 93, 186, 280 288 296 39, 59, 67, 78, 89, 101, 118, 134, 156, 178, 202, 236, 268, 304 308 312 320 324 336 75, 113, 150, 226, 300, 340 344 117, 234, 352 356 360 368 372 384 392 133, 266, 400 404 408 416 141, 282, 424 99, 149, 198, 298, 396, 448 452 456 464 468 157, 314, 472 480 488 512 115, 153, 173, 230, 306, 346, 460, 520 528 177, 354, 532 536 181, 362, 544 552 560 564 576 87, 131, 174, 197, 262, 348, 394, 524, 592 596 600 608 612 205, 410, 616 624 123, 139, 185, 209, 246, 278, 370, 418, 492, 556, 628 213, 426, 640 648 672 680 229, 458, 688 692 696 704 708 237, 474, 712 720 241, 482, 724 163, 217, 245, 326, 434, 490, 652, 736 740 744 768 261, 522, 784 788 792 800 79, 105, 119, 158, 179, 210, 238, 269, 316, 358, 420, 476, 538, 632, 716, 808 816 273, 546, 820 277, 554, 832 836 840 848 852 289, 578, 868 896 301, 602, 904 912 135, 203, 270, 305, 406, 540, 610, 812, 916 920 309, 618, 928 936 944 948 187, 211, 249, 281, 317, 374, 422, 498, 562, 634, 748, 844, 952 960 321, 642, 964 325, 650, 976 980 984 996 151, 201, 227, 302, 341, 402, 454, 604, 682, 804, 908 349, 698 357, 714 369, 738 373, 746 385, 770 397, 794 267, 401, 534, 802 405, 810 421, 842 433, 866 453, 906 307, 409, 461, 614, 818, 922 465, 930 469, 938 477, 954 493, 986 331, 441, 497, 662, 882, 994 513 525 529 315, 355, 473, 533, 630, 710, 946 541 363, 545, 726 219, 247, 329, 371, 438, 494, 557, 658, 742, 876, 988 561 565 577 597 403, 537, 605, 806 613 625 279, 419, 558, 629, 838 435, 653, 870 657 693 705 709 717 721 483, 725, 966 741 295, 393, 443, 499, 590, 665, 749, 786, 886, 998 753 769 789 805 813 817 547, 729, 821 555, 833 837 375, 563, 750, 845 853 579, 869 877 909 271, 361, 379, 407, 427, 481, 505, 542, 569, 611, 641, 673, 722, 758, 814, 854, 897, 917, 962 945 949 961 507, 571, 643, 761, 857, 965 981 439, 585, 659, 878, 989 997 303, 455, 606, 683, 910 423, 635, 715, 846, 953 723 739, 985 771 519, 779 699, 787 475, 535, 633, 713, 803, 950 819 843 867 583, 777, 875 883 367, 489, 551, 734, 827, 931, 978 631, 747, 841, 947 963 127, 169, 191, 225, 254, 287, 338, 339, 382, 431, 450, 451, 508, 509, 574, 601, 647, 676, 677, 678, 764, 765, 801, 862, 900, 901, 902, 971 979 663, 995 711 955 727, 969 759 855 603, 679, 905 591, 887 951 687 987 559, 745, 839, 993 847, 891 27, 31, 41, 47, 54, 55, 62, 63, 71, 73, 82, 83, 91, 94, 95, 97, 103, 107, 108, 109, 110, 111, 121, 124, 125, 126, 129, 137, 142, 143, 145, 146, 147, 155, 159, 161, 164, 165, 166, 167, 171, 175, 182, 183, 188, 189, 190, 193, 194, 195, 199, 206, 207, 214, 215, 216, 218, 220, 221, 222, 223, 231, 233, 235, 239, 242, 243, 248, 250, 251, 252, 253, 257, 258, 259, 263, 265, 274, 275, 283, 284, 285, 286, 290, 291, 292, 293, 294, 297, 299, 310, 311, 313, 318, 319, 322, 323, 327, 328, 330, 332, 333, 334, 335, 337, 342, 343, 345, 347, 350, 351, 353, 359, 364, 365, 366, 376, 377, 378, 380, 381, 386, 387, 388, 389, 390, 391, 395, 398, 399, 411, 412, 413, 414, 415, 417, 425, 428, 429, 430, 432, 436, 437, 440, 442, 444, 445, 446, 449, 457, 459, 462, 463, 466, 467, 470, 471, 478, 479, 484, 485, 486, 487, 491, 496, 500, 501, 502, 503, 504, 506, 514, 515, 516, 517, 518, 521, 523, 526, 527, 530, 531, 539, 543, 548, 549, 550, 553, 566, 567, 568, 570, 572, 573, 580, 581, 582, 584, 586, 587, 588, 589, 593, 594, 595, 598, 599, 607, 609, 617, 619, 620, 621, 622, 623, 626, 627, 636, 637, 638, 644, 645, 646, 649, 651, 654, 655, 656, 660, 661, 664, 666, 668, 669, 670, 674, 675, 684, 685, 686, 689, 690, 691, 694, 695, 697, 700, 701, 702, 706, 707, 718, 719, 728, 730, 731, 732, 733, 737, 752, 754, 755, 756, 757, 760, 762, 763, 772, 773, 774, 775, 776, 778, 780, 781, 782, 783, 785, 790, 791, 793, 796, 797, 798, 809, 811, 815, 822, 823, 824, 825, 826, 828, 829, 830, 834, 835, 849, 850, 851, 856, 858, 859, 860, 861, 864, 865, 872, 873, 874, 880, 881, 884, 885, 888, 890, 892, 893, 898, 899, 903, 911, 913, 914, 915, 918, 919, 921, 924, 925, 926, 929, 932, 933, 934, 935, 939, 940, 941, 942, 956, 957, 958, 967, 968, 970, 972, 973, 974, 977, 982, 983, 992, 1000 943 975 879 615, 923 735 999 799 255, 383, 510, 575, 766, 863, 907 495, 743, 990 991 927 831 667, 751, 889 447, 511, 671, 681, 767, 795, 807, 894, 895 639, 959 871 703, 937

### When the conjecture have been proposed ?

Formulated in 1937 it remains unsolved: nobody has been able to prove this conjecture always ends with 1.

## Source code

dCode retains ownership of the source code of the script Collatz Conjecture. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, etc.) which dCode owns rights can be transferred after sales quote. So if you need to download the Collatz Conjecture script for offline use, for you, your company or association, see you on contact page !

Team dCode read all messages and answer them if you leave an email (not published). It is thanks to you that dCode has the best Collatz Conjecture tool. Thank you.

Source : http://www.dcode.fr/collatz-conjecture
© 2017 dCode — The ultimate 'toolkit' to solve every games / riddles / geocaches. dCode