Rechercher un outil
Chiffre de Phillips

Outil pour déchiffrer/encoder avec le chiffre de Phillips. Le chiffre de Phillips est un code polyalphabétique utilisant 8 grilles générées avec un mot clé.

Résultats

Chiffre de Phillips -

Catégorie(s) : Cryptographie, Chiffre Poly-Alphabétique

dCode et vous

dCode est gratuit et ses outils sont une aide précieuse dans les jeux, les énigmes et les problèmes à résoudre au quotidien !
Vous avez un problème, une idée de projet, besoin d'un outil spécifique et dCode ne peut pas (encore) vous aider ? Vous désirez une prestation de développement sur mesure ? Contactez-moi !


dCodeur lit tous les messages et y répond si vous indiquez un email (non publié) ! C'est grâce à vous que dCode a le meilleur outil de Chiffre de Phillips, Merci.

Chiffre de Phillips

Annonces sponsorisées

Déchiffrement avec Phillips









Chiffrement avec Phillips







Outil pour déchiffrer/encoder avec le chiffre de Phillips. Le chiffre de Phillips est un code polyalphabétique utilisant 8 grilles générées avec un mot clé.

Réponses aux Questions

Comment encoder avec Phillips ? (Principe de chiffrement)

Le chiffrement de Philips utilise une grille initiale de taille 5x5 (ou un mot clé qui permet de générer cette grille).

Exemple : Grille de base (avec le Z omis)

\12345
1ABCDE
2FGHIJ
3KLMNO
4PQRST
5UVWXY

La première étape est de générer 7 autres grilles de lettres 5x5 (pour obtenir 8 grilles au total). La grille 1 est la grille initiale, les grilles 2, 3, 4 et 5 sont obtenues à partir de la grille 1 en permutant ligne 1 avec respectivement les lignes 2, 3, 4 et 5, enfin les grilles 6, 7 et 8 sont obtenues à partir de la grille 5 en permutant ligne 1 avec respectivement la ligne 2, 3 et 4.

Une erreur s'était glissée dans l'explication des grilles entre le mois d'aout et octobre 2017

Exemple :

Grille 1
\12345
1ABCDE
2FGHIJ
3KLMNO
4PQRST
5UVWXY
Grille 2
\12345
2FGHIJ
1ABCDE
3-----
4-----
5-----
Grille 3
\12345
2FGHIJ
3KLMNO
1ABCDE
4-----
5-----
Grille 4
\12345
2-----
3-----
4PQRST
1ABCDE
5-----
Grille 5
\12345
2FGHIJ
3KLMNO
4PQRST
5UVWXY
1ABCDE
Grille 6
\12345
3KLMNO
2FGHIJ
4-----
5-----
1-----
Grille 7
\12345
3-----
4PQRST
2FGHIJ
5-----
1-----
Grille 8
\12345
3-----
4-----
5UVWXY
2FGHIJ
1-----

Le chiffre de Phillips découpe le textehref en blocs de taille T caractères (par défaut T=5 lettres, dans ce cas les blocs sont appelés pentagrammes). Au Nième bloc est associé la grille N (si il y a plus de blocs que de grilles, le 9ème bloc est à nouveau associé à la grille 1, et ainsi de suite).

Exemple : Le message DCODEPHILLIPS est segmenté DCODE,PHILL,IPS et DCODE est associé à la grille 1, PHILL à la grille 2 et IPS à la grille 3.

Chaque lettre d'un bloc est alors repérée dans la grille associée, et correspond à une lettre chiffrée selon un décalage sur la grille d'une case vers le bas et une case vers la droite (décalage 1,1). (Si cette case n'existe pas, il faut imaginer une continuité de la grille par son coté opposé).

Exemple : D est chiffré par J dans la grille

\12345
1ABCD
2FGHJ
3KLMNO
4PQRST
5UVWXY
et ainsi de suite, DCODEPHILLIPS est chiffré par JIPJFVDERROVY

Comment décoder par Phillips ? (Principe de déchiffrement)

Le déchiffrementpar Phillips est identique au chiffrement, excepté pour le décalage dans la grille qui est inversé. Au lieu de se déplacer d'une case vers la droite et d'une case vers le bas, le déchiffrement réalise le chemin inverse, en se déplaçant d'une case vers la gauche et d'une case vers le haut.

Exemple : J se déchiffre par D dans la grille

\12345
1ABCD
2FGHJ
3KLMNO
4PQRST
5UVWXY

.

Comment reconnaitre le chiffre Phillips ?

Le chiffre de Phillips peut être assimilé à un chiffrement polyalphabétique, son indice de coincidencehref est faible entre 0.4 et 0.5.

L'utilisation d'une grille 5x5 induit que le message est composé d'au plus 25 lettres distinctes.

Quelles sont les variantes du chiffre Phillips ?

Plusieurs variantes sont possibles :

- Une méthode alternative de génération des 8 grilles, voire ne pas se limiter à 8 grilles.

- Le décalage de (+1,+1) peut très bien être modifié par n'importe quel couple (+n,+m)

- La taille de bloc T peut être différente, voire varier selon une règle de découpage donnée.

Poser une nouvelle question

Code source

dCode se réserve la propriété du code source du script Chiffre de Phillips en ligne. Sauf code licence open source explicite (indiqué Creative Commons / gratuit), tout algorithme, applet, snippet ou logiciel (convertisseur, solveur, chiffrement / déchiffrement, encodage / décodage, encryptage / décryptage, traducteur) ou toute fonction (convertir, résoudre, décrypter, encrypter, déchiffrer, chiffrer, décoder, traduire) codé en langage informatique (PHP, Java, C#, Python, Javascript, etc.) dont dCode a les droits pourra être cédé après devis. Donc si vous avez besoin de télécharger le script en ligne Chiffre de Phillips pour un usage hors ligne pour vous, votre entreprise ou association, rendez-vous sur la page de contact !

Questions / Commentaires


dCodeur lit tous les messages et y répond si vous indiquez un email (non publié) ! C'est grâce à vous que dCode a le meilleur outil de Chiffre de Phillips, Merci.


Source : http://www.dcode.fr/chiffre-phillips
© 2017 dCode — La 'boite à outils' indispensable qui sait résoudre tous les jeux / énigmes / géocaches. dCode